DISTRIBUTED DATABASES

Course Code		Year	III	Semester	II
Course Category	Honors	Branch	CSE	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	Database Management Systems
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon su	ccessful completion of the course, the student will be able to				
CO1	Understand the principles of Distributed Databases, Architectures and Design	L2			
CO2	Apply the concepts of query processing and optimization for Distributed Databases	L3			
CO3	Apply reliability concepts to analyse various reliability features of a distributed database.	L3			
CO4	Analyze various mechanisms/algorithms of Transactions for a given context	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	2								2	2			3	
CO3	2								2	2			2	
CO4		2							2	2			3	3

Syllabus						
UNIT-1	Introduction; Distributed Data Processing, Distributed Database System, Promises of DDBSs, Design Issues Distributed DBMS Architecture: Architectural Models for Distributed DBMS. Distributed Database Design: Top-Down Design Process, Distribution Design issues, Fragmentation, Allocation	CO1				
UNIT-2	Query processing and decomposition: Query processing objectives, characterization of query processors, layers of query processing, query decomposition, localization of distributed data.	CO1,CO2				
UNIT-3	Distributed query Optimization: Query optimization, centralized query optimization, Join Ordering in Distributed Queries, distributed query optimization algorithms	CO1,CO2				
UNIT-4	Transaction Management: Definition, properties of transaction, types of transactions, distributed concurrency control: serializability, concurrency control mechanisms & algorithms, time - stamped & optimistic concurrency control Algorithms.	CO1, CO4				
UNIT-5	Distributed DBMS Reliability: Reliability concepts and measures, fault-tolerance in distributed systems, failures in Distributed DBMS, local & distributed reliability protocols.	CO1,CO3				

Learning Resources					
Text books:					
1	Principles of Distributed Database Systems, M. Tamer OZSU and Patuck Valduriez,				
	2011, Pearson Edition.				
Refe	erences:				
1	Distributed Databases, Stefano Ceri and Giuseppe Pelagatti, McGraw Hill.				
2	Database Systems: The Complete Book ,Hector Garcia-Molina, Jeffrey D. Ullman,				
	Jennifer Widom, Second Edition, Pearson International Edition				
e-Re	e-Resources and other Digital Material:				
1	https://www.my-mooc.com/en/mooc/distributed-database-systems/				